
Panel: Practical Issues in Implementing Software Reliability Measurement

Chair: Allen P. Nikora, Jet Propulsion Laboratory, California Institute of Technology
Panelists: John D. Musa, Software Reliability Engineering and Testing Courses

Norman F. Schneidewind, Division of Computer and Information Sciences and
Operations, Naval Postgraduate School
William W. Everett, SPRE, Inc.
John C. Munson, Computer Science Department, University of Idaho
Mladen A. Vouk, Department of Computer Science, College of Engineering,
North Carolina State University

Abstract
Many ways of estimating sofhvare systems' reliability, or
reliability-related quantities, have been developed over
the past several years. Of particular interest are methods
that can be used to estimate a sofhvare system's reliability
or fault content prior to test, or to discriminate between
components that are fault-prone and those that are not. In
this panel, we discuss practical issues to be addressed in
implementing software reliability measurement techniques
in a production development environment.

Statement of Bill Everett

As indicated in the Panel Statement, there is interest
in developing methods that can be applied earlier in the
development cycle (before system testing) to estimate
software reliability. Estimating software fault content or
fault-proneness is important as software's propensity to
fail is strongly correlated to the remaining faults in the
software.

However, we also need to include "dynamic" proper-
ties of how the software is to be used to develop a fuller
picture of software's failure-proneness. Indeed, a part of
the software may have a large number of faults, but if it is
never exercised through the usage we expect to put it
through, then those faults will never trigger failures.

To develop a more complete picture, we also have to
estimate dynamic properties of the software. These in-
clude where the processing will occur in the software and
how much processing will occur (these are correlated to
the "operational profile"). These dynamic properties de-
termine the likelihood of tripping over a fault. In addition,
we need to estimate the likelihood that a fault will trigger
a failure when it is encountered (fault exposure ratio).

Also, we need to develop these estimates on a soft-
ware component basis rather than just a system basis.
Given fault content estimates and the estimates of the dy-
namic properties of software components, we can then
develop estimates of reliability indicators on a component
basis. This should be done early in the software develop-

ment life-cycle to influence and guide the design of the
software to meet reliability objectives. Estimates can be
refined during development as more accurate information
on individual components becomes available.

For safety-critical systems, these software reliability
indicators can be used along with other safety assessment
techniques such as fault tree analysis to develop probabil-
istic risk estimates of critical failure events. Doing such
analysis early in the development life-cycle provides in-
sight into which components contribute most to the risk of
occurrence of such events and allows the opportunity of
introducing "mitigations" to reduce their contribution.

Also, the reliability indicators can be used to develop
(and calibrate) software reliability growth models of both
individual components and the software system. Failure
data collected during system test can then be used to vali-
date the models and hence the underlying reliability of the
system.

Statement of John Musa

The principal practical issues in measuring reliability
include determining when the failures occurred, dealing
with small failure samples, making test represent the field,
and handling system evolution.

"When the failure occurred" must be expressed in
terms that relate to the amount of processing. The sim-
plest way to do this is to use clock time, but this is satis-
factory only if there is constant average (over a length of
time roughly equal to a failure interval) computer utiliza-
tion. Using execution time (the actual time instructions
are executing) is precise, but it is difficult to instrument
for distributed systems, and these are very common these
days. Natural units, which are measures related to the
output of a software-based product, such as pages of out-
put, transactions, or telephone calls, generally provides the
best solution. They are not always common across all
operations, but this problem can be handled by choosing a
reference natural unit and converting other natural units to
that reference.

In many cases, particularly when reliability is high,
you may only have a small sample of failures. In this
situation, estimates by severity class, operation, or com-
ponent may be of limited value because of large confi-
dence intervals. If the proportions among the different
groups of failures are stable, you can use all failures to
estimate total failure intensity and then apply the propor-
tions to obtain the group failure intensities.

Often when you are making reliability measurements,
you are doing so in test with the goal of estimating the
reliability you will obtain in the field. These estimates are
only valid if test represents the field. Hence you must
develop the operational profile to characterize use in the
field, so that you can accurately reproduce it in test. You
randomly select tests, at all times using the same opera-
tional profile (don’t rearrange the order of tests). Use the
same data base cleanup procedure in test as you will in the
field. You need to recognize that feature and regression
tests will somewhat underestimate failure intensity, be-
cause failures that result from interaction of operations
and data degradation will not be present. In many cases,
however, load test will predominate over feature and re-
gression tests, so any error in making reliability measure-
ments will be small.

The other major issue is the system evolution that can
occur during test. The most practical way to handle this is
to measure failure intensities of operation groups or com-
ponents separately. These are then combined when the
evolution causes the operation groups or components to be
combined. Again, failure intensity may be underestimated
because failures resulting from interactions may not occur.

Statement of Norm Schneidewind

While software design and code metrics have enjoyed
some success as predictors of software quality attributes
such as reliability , the measurement field is stuck at this
level of achievement. If measurement is to advance to a
higher level, we must shift our attention to the front-end of

the development process, because it is during system con-
ceptualization that errors in specifying requirements are
inserted into the process. A requirements change may in-
duce ambiguity and uncertainty in the development proc-
ess that cause errors in implementing the changes. Subse-
quently, these errors propagate through later phases of
development and maintenance. These errors may result in
significant risks associated with implementing the re-
quirements. For example, reliability risk (i.e., risk of faults
and failures induced by changes in requirements) may be
incurred by deficiencies in the process (e.g., lack of preci-
sion in requirements). Although requirements may be
specified correctly in terms of meeting user expectations,
there could be significant risks associated with their im-
plementation. For example, correctly implementing user
requirements could lead to excessive system size and
complexity with adverse effects on reliability or there
could be a demand for project resources that exceeds the
available funds, time, and personnel skills. Interestingly,
there has been considerable discussion of project risk
(e.g., the consequences of cost overrun and schedule slip-
page) in the literature but not a corresponding attention to
reliability risk.

The generation of requirements is not a one-time ac-
tivity. Indeed, changes to requirements can occur during
maintenance. When new software is developed or existing
software is changed in response to new and changed re-
quirements, respectively, there is the potential to incur
reliability risks. Therefore, in assessing the effects of re-
quirements on reliability, we should deal with changes in
requirements throughout the life cycle. In addition to the
relationship between requirements and reliability, there
are the intermediate relationships between requirements
and complexity and between complexity and reliability.
These relationships may interact to put the reliability of
the software at risk because the requirements changes may
result in increases in the size and complexity of the soft-
ware that may adversely affect reliability.

